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Abstract. All major river systems in the Contiguous United States (and many in the world) are impacted by dams, yet reservoir 

operations remain difficult to quantify and model due to lack of data. Reservoir operation data is often inaccessible or 

distributed across many local operating agencies making the acquisition and processing of data records quite time consuming.  10 

As a result, large scale models often rely on simple parameterizations for assumed reservoir operations and have very limited 

ability to evaluate how well these approaches match actual historical operations. Here, we use the first national dataset of 

historical reservoir operations in CONUS, ResOpsUS, to analyse reservoir storage trends and operations in more than 600 

major reservoirs across the US.  Our results show clear regional differences in reservoir operations.  In the eastern US, which 

is dominated by flood control storage, we see storage peaks in the winter months with sharper decreases in operational range 15 

(i.e., the difference between monthly max and min storage) in the summer. While in the more arid western US where storage 

is predominantly for irrigation, we find that storage peaks during the spring and summer with increases in the operational range 

during the summer months. The Lower Colorado region is an outlier because its seasonal storage dynamics more closely 

mirrored that of flood control basins, yet the region is classified as arid, and most reservoirs have irrigation uses. Consistent 

with previous studies we show that average annual reservoir storage has decreased over the past 40 years, although our analyses 20 

show a much smaller decrease than previous work.  The reservoir operation characterizations presented here can be used 

directly for development or evaluation of reservoir parameterizations in large scale models.  We also evaluate how well 

historical operations match common assumptions that are often applied in large scale reservoir parameterizations. For example, 

we find that 100 dams have maximum storage values greater than the reported reservoir capacity from the Global Reservoirs 

and Dams database (GRanD).  Finally, show that operational ranges have been increasing over time in more arid regions and 25 

decreasing in more humid regions, pointing to the need for operating policies which are not solely based on static values.  

1. Introduction 

The Contiguous United States (CONUS) contains tens of thousands of dams that have greatly impacted all major river systems 

(Grill et al., 2019; Patterson and Doyle, 2019).  The impact of reservoir operations on streamflow regimes is complex and 

varies both regionally and temporally, with different operating patterns based on climate and reservoir purpose.  Reservoir 30 

conditions (i.e. the amount of stored water, total releases, and priority targets) and human demand have both evolved over 

https://doi.org/10.5194/hess-2023-194
Preprint. Discussion started: 19 September 2023
c© Author(s) 2023. CC BY 4.0 License.



2 
 

decades and in many cases depleted storage and increased demand threaten reservoir resilience to droughts (Chen and Olden, 

2017; Collier et al., 1997; Döll et al., 2012; Nilsson and Berggren, 2000; Johnson et al., 2008; Naz et al., 2018; Ho et al., 2017; 

Grill et al., 2019; Lehner et al., 2011).  For example, reservoir storage across the US has declined by at least 10% over the past 

thirty years (Adusumilli et al., 2019; Zhao and Gao, 2019; Hou et al., 2021; Randle et al., 2021). Trends are not spatially 35 

uniform though and there are large regional differences both in storage trends and the driving causes (Hou et al., 2021).   

Declines in storage can be caused by sedimentation (Wisser et al., 2013; Randle et al., 2021), increases in streamflow variability 

(Naz et al., 2018), decreases in precipitation (Barnett and Pierce, 2008; Prein et al., 2016; Zhao and Gao, 2019) and increased 

evaporative losses (Zhao and Gao, 2019; Zou et al., 2019). Arid regions such as the southwestern United States have 

historically seen the largest storage declines (Zhao and Gao, 2019).  Most recently the megadrought in the western US has 40 

caused unprecedented streamflow declines  (Williams et al., 2022) and left reservoir levels at historic lows (Cayan et al., 2010; 

Williams et al., 2022). Declines have also been noted in the more humid south-eastern United States (Hou et al., 2021), yet 

other studies have noted increasing storage trends in the south-eastern and Great Plains regions of the United States storage 

which further confounds our understanding of future predictions (Zou et al., 2018).  

 45 

There is a great need to better understand and simulate the large scale (i.e. regional to global) impact of reservoirs on 

streamflow regimes and water availability both in the past and the future.  Decision support systems and detailed operational 

models are routinely employed to manage reservoir systems locally. However, the US, and well as many other countries around 

the world, lacks a centralized repository of reservoir operations.  As a result, direct observations of reservoir levels and releases 

are not generally used in large scale approaches (Wada et al., 2017).  Rather most continental to global scale studies either; (1) 50 

use hydrologic models to simulate operations based on static reservoir properties and parameterized operating policies (Voisin 

et al., 2013; Hanasaki et al., 2006; Döll et al., 2003; Lehner et al., 2011; Biemans et al., 2011; Haddeland et al., 2006; Giuliani 

and Herman, 2018; Turner et al., 2020; Ehsani et al., 2017; Yassin et al., 2019; Turner et al., 2021), or (2) use remote sensing 

observations of water levels and reservoir area to calculate changes in storage volume (Zhao and Gao, 2019; Adusumilli et al., 

2019; Hou et al., 2021).  55 

 

Many large-scale models employ rule curve-based reservoir operations where releases follow set rates based on demand and 

reservoir storage. The release rates for the rule curves are generally derived from reservoir capacity values and other static 

watershed properties that are readily available on regional and global scales (Voisin et al., 2013; Haddeland et al., 2006; Döll 

et al., 2003; Ehsani et al., 2017; Hanasaki et al., 2006; Yassin et al., 2019).  In many cases, simulated operations are kept as 60 

general as possible so they can fit a variety of reserovir purposes and climatic conditions, and in most cases they do not contain 

dynamic zoning (operational zones change based on the season).  This approach is easily generalizable and can work for 

multiple regions and dam type even when data is sparse.  However, it relies on many simplifying assumptions such as lumping 

reservoirs into categories based on main use or assuming dead storage is equal to 10% of total storage capacity.  Furthermore, 
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given the lack of data, model calibration is of often only done on a few reservoirs or regions where data is accessible, leaving 65 

large uncertainty in local performance and skewing results towards specific data-rich regions.  

 

Remote sensing can’t directly observe reservoir volumes but can be used to observe water body extent and elevation.  Reservoir 

storage must then be back calculated from an elevation-storage relationship on a dam-by-dam basis using Bathymetry or other 

approaches based on elevation datasets (Hou et al., 2022; Zhao and Gao, 2019; Crétaux et al., 2011; Busker et al., 2019).    70 

Remote sensing products have great promise for large scale evaluation of current system states and historical behaviours. For 

example, Hou et al (2022) recently created a global analysis of reservoir storage from 1984-2015 based on remote sensing 

data.  Still it should be noted that these approaches have several significant limitations; (1) they are not directly observing 

storage so the quality of the results depends on the accuracy of the area storage relationships that can be developed (Zhao and 

Gao, 2019; Crétaux et al., 2011), (2) their precision is limited by the spatial resolution of the remote sensing products and 75 

therefore large reservoirs are most commonly studied,  (3) spatial resolution and temporal frequency is often very limited 

before the early 2000s which makes it difficult to study trends, and (4) data gaps in daily data exist due to weather and frequency 

of satellite coverage. As with the modelling approaches, the lack of direct observations of reservoir operations make it 

challenging to quantify biases and evaluate local performance of approaches.       

 80 

The recently published ResOpsUS (Steyaert et al., 2022) dataset can help address the observation gap inherent in both 

modelling and remote sensing approaches.  ResOpsUS contains historical reservoir operations (storage, elevation, inflows and 

outflows) for more than 600 large dams in the US gathered directly from reservoir operators (Steyaert et al. (2022)).  The 

dataset covers operations from roughly 1930 to 2020, although periods vary by reservoir depending on construction date.  

Already ResOpsUS has been used by Turner et al. (2021) to derive a set of national rule curves for simulation in the MOSART 85 

model.  To do this Turner et al. (2021) used the ResOpsUS dataset to derive data driven rule curve parameters and then 

extrapolated these derived operations to data scarce reservoirs in the Northeastern and Great Lakes regions with similar 

characteristics.  

 

Here we expand on previous work to provide a national characterization of historical reservoir operations.  Our results provide 90 

the first national characterization of historical reservoir behaviours based exclusively on direct observations of reservoir 

storage levels and releases provided by reservoir operators.  Thus, this is the most direct look at how reservoirs have actually 

behaved across the US over time.   This characterization is interesting of itself, but our larger purpose is to provide quantitative 

characterization at a spatial scale that can be useful for the parameterization and evaluation of national to global modelling and 

remote sensing approaches.  Specifically, we present regional differences in seasonality (Section 3.1), and historical reservoir 95 

trends over the past 40 years nationally and regionally (Section 3.2 and 3.3) and an analysis of common assumptions in existing 

large scale reservoir modelling approaches (Section 4.2)   
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2. Methods  

The bulk of our analysis on historical reservoir operations uses data provided by reservoir operators in the ResOpsUS dataset 

(Steyaert et al., 2022). First, we aggregated the data in ResOpsUS by hydrologic regions in CONUS. The data from ResOpsUS 100 

is combined with other existing datasets on historical reservoir operations and hydroclimatic variables to explore seasonal 

dynamics, storage trends, and drought sensitivity (Section 2.1). Data processing and storage calculations used for trend analysis 

are summarized in Sections 2.2 and 2.3 respectively. We also calculated standardized streamflow indices for all regions that 

were used in our drought analysis (Section 2.4). All scripts for analysis are located on GitHub and linked in Section 6: Data 

Availability. 105 

 

2.1 Data 

Historical reservoir storage, the main component of our analysis, was pulled from ResOpsUS (Steyaert et al., 2022). We also 

used static reservoir properties from Global Reservoirs and Dams Dataset (GRanD) (Lehner et al., 2011) and watershed 

boundaries from Watershed Boundary Dataset (WBD) dataset from NHD (Geological, 2004). For our drought sensitivity 110 

analysis, we used the United States Geological Survey reference gages from the GagesII dataset (Falcone, 2011), and stream 

gage timeseries data from the National Water Information Systems (NWIS) Mapper from the United States Geological Survey 

(Survery, 2016).   

 

The ResOpsUS dataset is the most comprehensive dataset of historical reservoir operations in the US. It contains daily 115 

historical timeseries data for 678 large reservoirs (reservoirs with a storage capacity greater than 10 km!) including storage, 

inflow, releases, elevation, and evapotranspiration. Periods of coverage vary by dam (partially due to reporting and partially 

due to variability in dam construction dates) as do the variables provided. Overall reservoir storage and release timeseries are 

the most comprehensive, especially in the period from 1980 – 2019. We focus primarily on storage data for this analysis as it 

is the most consistently reported in this dataset. ResOpsUS has daily storage records for over 600 dams and covers 99% of all 120 

the reservoirs in the database.   

 

The reservoir data in ResOpsUS was obtained directly from the reservoir operators. Steyaert et al. (2022) noted there were 

some point errors, but no direct modifications to the data were made. Therefore, we preformed minor data processing to ensure 

consistency in our analysis.  First, we processed the reservoir storage timeseries to check for outliers. To do this we linked 125 

ResOpsUS with the Global Reservoirs and Dams dataset (GRanD).  GRanD contains static reservoir data such as storage 

capacity, construction date and reservoir main use for 6,862 dams throughout the world and 2,000 in the CONUS domain. 

After we linked the two datasets, we then identified outliers where the reported ResOpsUS storage exceeded the maximum 

storage capacity of the dam reported in GRanD. For these outliers, we adjusted the storage value to the maximum storage 

https://doi.org/10.5194/hess-2023-194
Preprint. Discussion started: 19 September 2023
c© Author(s) 2023. CC BY 4.0 License.



5 
 

capacity. Secondly, we filled in missing storage values using linear interpolation.  We also checked the period of record for 130 

every dam. In the rare instance that the build date in GRanD was later than the data start date in ResOpsUS, we amended the 

start date in GRanD to align with the data from ResOpsUS.  

 

Historical streamflow data was obtained from the United States Geological Survey’s NWIS database.  This streamflow data 

provided the basis for our Standardized Streamflow Index (SSI) calculations to quantify hydrologic drought periods. For each 135 

region, we limited out analysis to gages that were listed as ‘Reference’ gages in the GagesII dataset. This ensured that our 

derived standardized streamflow indices received little impact from the dams in the CONUS domain and therefore droughts 

could be mostly attributed to streamflow regime changes. Each region has multiple reference gages with which we calculated 

Standardized Streamflow Indices for.  

2.2 Regional Storage Calculations 140 

The reservoir storage and storage capacity timeseries were aggregated  by the two digit USGS Hydrological Units (HUC2s) 

and used to calculate the fraction of storage filled of each region (Geological, 2004). We opted to use the HUC2 boundaries to 

ensure that our sample size per region consistent of at least 10 dams. There are an average 110 dams per region. Although 

there is great variability from region to region, some regions have 15 dams (i.e., the Lower Colorado), while others have 200 

(i.e., Missouri region). 145 

 

In addition to evaluating total storage, we also calculate regional fraction filled (FF) to normalize the storage values and more 

directly compare across regions. The FF timeseries uses the total average storage for a given day in each region in ResOpsUS 

and divides that storage by the total storage capacity of all the dams in that region on that same day. Fraction filled time series 

were calculated using Equation 1 for daily time steps across the entire period of record that exists within the original ResOpsUS 150 

time series data.  

 

FF",$ =
∑ &'()*+,!,#
$
!%&
∑ -*.*-/'0!$
!%&

   ,          (1) 

 

Where FF is the fraction filled for region R on day d, storage/,$ is the reservoir storage for a given dam (i) on day (d) and 155 

capacity/ is the reservoir storage capacity for dam (i). Results are summed regionally for all active dams (n) in a region on a 

given day where ‘active’ dams are those dams for which a storage value is available in ResOpsUS. Daily fraction filled time 

series were averaged monthly and over the water year periods from 1980 – 2019.  Note also that we are dividing here by the 

reservoir storage capacity of dams that are actively reporting storage for ResOpsUS on a given day. Therefore, the Fraction 

Filled metric also normalizes for differences in the timing of dam construction and storage reporting.  160 
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Fraction filled analysis is only preformed for those regions where the ResOpsUS dataset has sufficient coverage to be 

representative of regional storage dynamics. To be included for analysis we must have storage data covering at least 40% of 

the total storage capacity reported in GRanD for a given region. Storage covered was calculated by summing reservoir storage 

capacity for all the dams in a region contained in ResOpsUS and dividing this value by the total storage capacity of all the 165 

dams in the same region in GRanD. Of the 18 regions in the United States, fourteen regions had enough data to be kept in our 

analysis (Figure 1).  As we did this analysis regionally, we only analyzed dams which did not have large gaps in their storage. 

Of the 625 dams in ResOpsUS that were still in our regions of interest, we removed 25 dams that had greater than 50% of their 

daily records missing across the forty-year period. Of the remaining dams, 170 had between 10% and 50% of their records 

missing and the remaining 429 had less than 10% of their records missing. Therefore, we were able to include 600 dams. For 170 

the individual analysis, the criteria stayed the same, yet for dams with limited data we did not calculate trends, therefore we 

were able to keep all 600 dams when calculating the month of highest fraction filled yet removed 78 for the storage trends 

(keeping 551).  

 

Seasonal aggregation was done by grouping monthly fraction filled values and then taking the maximum, minimum and median 175 

across different periods. Regional trends were calculated via Sens slopes using the fraction filled time series from 1980 – 2019.  

All Sens slope in this paper were calculated with a 95% confidence interval and a p value of 10% (0.1) was used as significant. 

Trends in the monthly range were calculated by taking the range of each month and year (i.e., January 1980, February 1980, 

etc.) and then plotting all the monthly ranges across time. Sens slopes were calculated for these fits using the same 95% 

confidence interval and p value of 0.1.   180 

2.3 Fraction Filled Anomaly and Recovery Ratio 

The fraction filled anomaly is used to normalize storage by month (equation 4) so we can compare drought impacts across 

regions. To start, we calculated the monthly (m) median FF value across the full period from 1980 – 2019 for each region (R) 

denoted as FF",1	in equation 4. Then, every daily FF value was matched to the correct month so that we could calculate the 

difference between the daily value and the monthly median. Daily fraction filled timeseries where then further aggregated to 185 

monthly for the drought sensitivity and recovery analysis (Section 3.4).  

 

Anomaly",$ = 	FF",$ − FF",1						,          (3) 

 

We then quantified several metrics for each drought. First, we calculated the drought recovery time as the date at which the 190 

SSI or FF anomaly values were equal to or greater than the respective value at the start of the drought period. We then define 

the recovery ratio (RR) as the time it took the fraction filled anomaly to recover divided by the time it takes the SSI values to 

recover.  Recovery ratio values less than 1 denote that the drought metric took longer to recover and RR values greater than 

one denote that the fraction filled anomaly took longer to recover. 
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3. Results 195 

In this section, we present reservoir operating patterns seasonally (Section 3.1), over time (Section 3,2) and in response to 

drought (Section 3.3). In all cases, we study the 14 bolded regions in Figure 1d that have sufficient data in ResOpsUS. In our 

discussion section, we summarize these behaviors, explore relationships between climate, operational uses and observed 

behaviors and compare to common assumptions made by reservoir modelling studies.  

 200 

Figure 1 maps reported reservoir usages nationally along with aridity to provide additional context for discussion. As shown 

in Figure c, reservoirs in CONUS have a variety of primary uses ranging from flood control, irrigation, recreation, water 

supply, navigation, fisheries and other. There are some clear regional trends. The western US is dominated more by irrigation 

uses, while flood control is the dominate usage along and east of the Mississippi River (Figure 1a-b). In ResOpsUS, flood 

control and irrigation main uses are the most numerous, however, there are also many navigation, hydroelectricity, water 205 

supply and recreation reservoirs across CONUS (Figure 1c). Irrigation and water supply main uses are typically west of the 

Mississippi, while flood control main use reservoirs exist throughout the entirety of the CONUS domain. California has the 

largest percentage of irrigation reservoirs with the Great Basin and Rio Grande following close behind (Figure 1a). There are 

no irrigation reservoirs in the dataset East of the Mississippi where the climate is more humid (Figure 1d).  Comparatively, 

flood control reservoirs have the highest concentration along the Mississippi Bains. All regions aside from the Lower Colorado 210 

have at least 1 flood control reservoir (Figure 1b). Navigation reservoirs are concentrated in the south-eastern portions of 

CONUS especially in the Ohio, South Atlantic, Lower Mississippi and Texas Gulf regions. Hydroelectricity reservoirs are 

most common in the Tennessee Basin and South Atlantic.   
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 215 
Figure 1: Maps depicting the percentage of storage capacity used for irrigation (a) and flood control (b), point locations of all dams 
in ResOpsUS colored by main use (c) and aridity of all regions with the 12 main regions in this study outlined (d). Panel a and b are 
calculated by summing up the total storage capacity of dams with irrigation (panel a) or flood control (b) as their main use and 
dividing that number by storage capacity in each region. Grey shading in both denotes regions that do not have any irrigation or 
flood control dams. Dams that did not have a main use are not mapped in panel c. Panel d depicts the mode of the Köppen-Geiger 220 
climate index pixels in the to classify the regional climates for each HUC2.  Panel d also contains the abbreviations of the basin 
names pulled from the USGS HUC2 watershed boundaries dataset as denoted in Table 1. 

 

Spatial patterns in reservoir purpose correlate with national climate patterns. Figure 1d shows the aridity indices according to 

the Köppen-Geiger index (Kottek et al., 2006). The Köppen-Geiger index uses annual precipitation and temperatures to classify 225 

climates into four main groupings: tropical, dry, continental, and polar.  Of these, the continental United States contains all 

except polar. For each HUC2 region, we used zonal statistics to calculate the number of pixels in each Köppen-Geiger climate 

index to quantify the regional climates. The north-eastern United States is humid continental meaning that seasonal 

precipitation variability is small, and temperatures are relatively cool (less than 22 degrees Celsius) all year. The south-eastern 

United States is primarily humid subtropical which has warm and moist conditions in the summer months which makes summer 230 

the wettest season. The midwestern United States is semi-arid with warm summers, snowy winters, and large diurnal 

temperature swings. Finally, the West Coast is dry summer temperate which is characterized by moderate temperatures and 

changeable, rainy weather with hot and dry summers.  
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Outside of the Pacific Northwest and California regions, it 235 

gets more humid as you move from west to east across the 

United States. The most arid regions exist in the 

southwestern United States and the coasts are much more 

humid. While not all regions have sufficient operations data 

for analysis, the 12 regions that are included do span dry 240 

summer temperate regions (California), semi-arid regions 

(Upper Colorado, Missouri, Great Basin, Lower Colorado), 

humid continental regions (Souris Red Rainy), and humid 

subtropical regions (Texas Gulf, Arkansas White Red, 

Lower Mississippi, Ohio, South Atlantic, Tennessee).   245 

3.1 Spatial Patterns in Reservoir Operations 

In this section, we quantify spatial patterns in regional 

reservoir operations using four main metrics: (1) monthly 

median fraction filled, (2) interannual variability in monthly 

fraction filled (referred to as the monthly storage range), (3) 250 

monthly operating ranges (i.e. the difference between 

maximum and minimum storage within a given month) and 

(4) the month of highest median fraction filled and highest 

fraction filled range for over 400 dams in these 14 regions.  

 255 

Based on the great variability in aridity and reservoir purpose across the US, we expect to see regional differences in both 

reservoir levels and seasonal operating patterns. Figure 2o shows the median fraction filled values across the 40-year study 

period from 1980 – 2019. Overall, we see that more arid regions and irrigation dominate regions tend to have larger median 

fraction filled values (greater than 0.6), yet all median fraction filled values do not exceed 0.8. This suggests a potential flood 

control storage of around 20%. Conversely, the more humid regions with greater flood control percentages in the southeast 260 

have median fraction filled values that sit between 0.2 and 0.5. These results align well with the historical analysis of Graf 

(1999), who investigated how storage capacity and population density changed in CONUS specifically looking at reservoir 

use (although this analysis was based on static reservoir values as opposed to operational data).  

 

Monthly maximum and minimums fraction filled values illustrate regional differences in seasonal operating patterns. Five of 265 

the regions have median storage peaking during June. Irrigation dominated regions (Missouri, Upper Colorado, Lower 

Colorado, Great Basin, Souris Red Rainy, Pacific Northwest, Figure 2f, i-n) have maximum storage peaks later than June 

USGS HUC2 Region Name Abbreviation in Figures 

CA California 

PNW Pacific Northwest 

GB Great Basin 

LC Lower Colorado 

US Upper Colorado 

TG  Texas Gulf 

AWR Arkansas White River 

MO Missouri 

SRR Souris Red Rainy 

UM Upper Mississippi 

LM Lower Mississippi 

SA South Atlantic 

TE Tennessee 

OH Ohio 

Table 1: USGS HUC2 names and corresponding 
abbreviations used in all figures. Basins are labelled 
from West to East coast.  
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(typically in July and August). This could correspond to water being held in storage later in the year to support summer 

irrigation. Conversely, regions with more flood control reservoirs (Ohio, Tennessee, Lower Mississippi, Texas Gulf, Arkansas 

White River, and South Atlantic, Figure 2a-d, f-g) generally have median fraction filled peaks in May.  Upper Mississippi 270 

(Figure 2c) is an outlier here as the median fraction filled values peak in June instead of early May, which could suggest the 

influence of other reservoir types. We also see that more humid regions tend to have less month-to-month variation in the 

median fraction filled, while more arid regions like the Upper Colorado and the Great Basin have stronger seasonal trends. 

 

The interannual variability in monthly fraction filled (referred to as monthly storage range) for the 40-year period is shown by 275 

the shaded areas in Figure 2.  Monthly storage ranges generally follow the same overall trends seen in the median values (i.e., 

monthly range peaks in the same month as median fraction filled values peak). However, monthly range peaks in the spring in 

the more humid basins (Figure 2a-d). Souris Red Rainy and Upper Mississippi both have a drop in May right before the median 

fraction filled peak in June. Comparatively, the maximum range for Lower Colorado is in July and the lower bound of the 

median fraction filled values stays the same from season to season. In general, the biggest monthly ranges are seen in arid 280 

basins except for seasonal peaks in Ohio.  

 

 

 

 285 
Figure 2:  Median monthly reservoir fraction filled (black line) and the monthly fraction filled range in purple shading from 1980-
2019 (panels a – l) and median fraction filled values (panel m). The vertical dashed line corresponds to the month of June as a 
reference point. Regions are organized from most humid to most arid regions.  

o 
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Next, we consider operational storage range.  This is the range of storage with each month (i.e. the maximum minus minimum 

storage in a single month). Note that this is different from the monthly storage range, which is maximum and minimum storage 290 

seen in a given month across our 40-year study period.  Figure 3 plots the median monthly operating range for all years, as 

well as the maximum and minimum by basin. Small values here indicate little variability within storage values for a given 

month, while large values can indicate significant filling or draining.   Except for the South Atlantic region (Figure 3d), the 

variability in operating ranges goes down as aridity increases (moving from top left to bottom right in Figure 3). While the 

minimum operating range stays constant across all seasons, the maximum operating range typically occurs in the spring months 295 

with peaks for humid and flood control dominated regions. Irrigation regions have peak operating range values in the summer 

(July and August). Notably, the Lower Colorado has a slight peak in April, yet the seasonal line is flat.  

 
Figure 3: Median operating range of reservoir storage (black line) per month and the maximum and minimum range values for each 
month in purple shading.  The dashed line corresponds to the month of June to provide a point of reference Median, maximum and 300 
minimum values are calculated for the monthly storage range (daily maximum – daily minimum storage) each month across the 
1980 – 2019 water year period. As in figure 2, regions are organized from most humid to most arid regions (a-i). 
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We observe two main types of behavior for the median operating range: basins with clear seasonal variability and those 

without.  The Tennessee, Lower Mississippi, Ohio, South Atlantic, Arkansas White Red, Texas Gulf, Missouri, Lower 305 

Colorado (Figure 3a-d, f-h, l) all have very little monthly variability in their operating ranges. Most of these regions are humid, 

and the dominant storage purpose is flood control. The Lower Colorado is an outlier as it is arid and irrigation dominated; 

however, this dynamic is to be expected as the flows in the Lower Colorado are heavily regulated and controlled by the 

Colorado River Compact. California, Upper Colorado, Great Basin, the Pacific Northwest, Upper Mississippi, and Souris Red 

Rainy (Figure 3e, i-k) all have a clear seasonal cycle in the operating ranges. All these regions exhibit a peak in median 310 

operating range during the spring or summer months and, except for Souris Red Rainy, Upper Mississippi and the Pacific 

Northwest are predominately semi-arid. Peaks in the spring would be consistent with reservoir filling in snowmelt dominated 

basins (Souris Red Rainy, Pacific Northwest, and Upper Colorado), while summer peaks may reflect drawdown for irrigation 

in the summer (California, Upper Mississippi, and Great Basin regions). Finally, the operational range variability (purple 

shading) peaks based on main use with non-irrigation uses (mainly in the eastern US) peaking in winter and irrigation uses 315 

(the Western US) in late spring and summer.  
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Figure 4: Maps of individual dams colored by the month of highest fraction filled median (a) and largest fraction filled range (b).  

To complement the regional analyses and disentangle the effect of storage capacity on the regional analyses, we plotted the 320 

month of greatest median fraction filled (Figure 4 panel a) and the month of largest fraction filled range (Figure 4 panel b). 

Overall, most individual dams have peaks in median fraction filled in the spring. the largest fraction filled median occurs 

mostly in April for reservoirs east of the Mississippi and June for reservoirs west of the Mississippi. These regional differences 

align with the priority of either flood control (eastern reservoirs) and irrigation (those in the western US) as well as seasonal 

difference between snowmelt dominated and rainfall dominated basins.  The large median ff in the western US late into summer 325 
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most likely supports summer irrigation.  Another large subset of reservoirs has median ff peaks in winter (November – 

February). These reservoirs are all located in the Southeastern US and the MidAtlantic regions. The peak in median fraction 

filled during this period most likely aligns with flood control after the fall storm season.  

 

The monthly fraction filled range map (Figure 4 panel b) shows similar trends: large ranges in the winter months for the eastern 330 

and Southeastern US and large ranges in the summer for the western US. These two main periods align with the necessary 

operations for flood control (primarily during winter months) and irrigation (primarily during the summer and early fall 

months). That said, there are a large subset of reservoirs across the Western US (primarily in California, the Lower Colorado, 

and the Pacific Northwest) that have fraction filled range peaks in the winter months due to increased storage for water use in 

the spring.  335 

3.2 National Storage Trends 

Over the past hundred years, reservoir storage capacity has steadily increased across the US (Figure 5a).  In the 1950s total 

storage capacity rapidly increased with a construction boom (Benson, 2017; Ho et al., 2017; Di Baldassarre et al., 2018). 

Starting in 1975, dam construction began to slow down as environmental regulations increased and prime locations for large 

dams were increasingly taken. By the 1980s total storage capacity in CONUS levelled off and the era of large dam building 340 

came to an end.  

 

As previously noted, the ResOpsUS dataset that we are using for our analysis includes data for 678 dams, roughly 85% of the 

dams with a storage capacity greater than 1,000 MCM and 77% of the total storage in CONUS (Figure 5a dashed line). While 

all the storage is not included in this dataset, Figure 5a shows that there is a similar temporal trend in the reservoir storage 345 

covered in ResOpsUS and the total national storage (i.e., rising most rapidly up to 1980 and then levelling off). It should also 

be noted that reservoir storage capacity decreases in ResOpsUS after 2020 are due to missing data in recent years for the 

ResOpsUS dataset, and not an indication of dam removal (recall that the ResOpsUS storage capacity is reporting only the 

capacity of those dams that have data each year).  

 350 
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Figure 5: Total storage capacity reported by GRanD (solid line) and the storage capacity of 679 large dams in ResOpsUS (dashed).  
(b) The reservoir fraction filled value on October 1st from the ResOpsUS data from the forty-year period from 1980 – 2019 
(interannual fraction filled).  The lavender line is the linear fit through this entire period of record with a slope of -0.002 fraction 355 
filled per year and a p value of 0.01. The colored rectangles depict the drought periods with darker colors referring to more severe 
droughts (SPI values less than -0.3), medium dark (SPI values between -0.1 and -0.3) and lighter bars for least severe droughts 
(values between 0 and -0.1).  

While reservoir storage capacity has held steady over the past 40 years (1980 – 2019), the fraction filled has steadily decreased 

over this period (denoted by the lavender trend line on Figure 5b).  There can be many reasons for storage declines (i.e., 360 

sedimentation, increased demand, evaporative losses, decreased precipitation). However, broadly speaking, decreases in 

fraction filled are correlated to climatic shifts as illustrated by drops after extreme drought periods (colored in maroon). 

Conversely, during non-drought periods and less severe droughts (pale pink) we see that reservoirs can recover, although not 

fully (as indicated by the declining trend). Overall, reservoir storage peaks at 60% fraction filled in the 1989 and drops all the 

way to 43% in 2007. In more recent years, there is some recovery of fraction with a final value of 53%.  We also plot the 365 

reservoir fraction filled variance over time (Figure 5b, note this is the annual variance of daily fraction filled values, referred 

to as annual storage variance). Annual storage variance peaked in 1995 and does not demonstrate the same clear trend, as was 

shown with storage. Variance generally increases during drought periods and is lower during non-drought periods. This means 

that variance is peaking during the same periods that storage is dropping suggesting an inverse relationship between variance 

and storage levels.  370 

 

3.3 Regional Storage Trends 

Next, we evaluated regional storage trends for the 14 regions that had 40% or more storage covered. We calculate a linear 

trend using the first month of the water year (October) values from 1980 - 2019 (Figure 6a- l) to evaluate carryover storage. 

From this, we identified three behavior types: 1) low interannual variability (Figure 6, a-h), 2) more interannual variability but 375 
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no significant linear trend (Figure 6i, j, k) and 3) high variability and trends (Figure 6l, m, n). Tennessee, Lower Mississippi, 

Ohio, South Atlantic, Arkansas White Red, and Texas Gulf display slight linear interannual fraction filled trend and have very 

small changes in interannual storage. These regions are dominated by flood control, navigation and hydroelectricity, main uses 

that require stable heads to generate use. Additionally, these regions are all humid (a-d) and semi-arid (Figure 6f, g). This is 

consistent with results of section 3.1 which showed that the more humid and flood control dominated parts of the country tend 380 

to have lower storage values overall and less variability in storage. Of these the Upper Mississippi, Lower Mississippi, 

Tennessee, and Ohio regions have statistically significant linear trends (p <0.05 

) and all are positive suggesting there has been an increase in storage over time.  

 

The second set of regions (Souris Red Rainy, Missouri, California, the Pacific Northwest, and Great Basin, Figure 6g, i-k) all 385 

have large interannual variability but very slight linear trends that are not statistically significant. These regions have larger 

carryover storage and are mainly water supply and irrigation dominated and are all more arid (i.e., semi-arid and dry summer 

temperate in the case of California and the Pacific Northwest). Conversely Upper Colorado (Figure 6l) has both high 

interannual variability and a statistically significant negative storage trend. In all these regions, reservoir storage appears to be 

strongly influenced by dry periods as shown by the shading in Figure 6.  390 

 

Finally, the Lower Colorado (figure 6n) does not fit into any of these groupings. This basin has a strong linear trend and little 

interannual variability (note that the fraction filled does not return to a value each year, rather plummets). This semi-arid basin 

mainly consists of irrigation, water supply and hydroelectricity main uses yet we only see the interannual variability similar to 

non-irrigation reservoirs. This is likely because storage in the Lower Colorado is dominated by storage in Lake Mead as the 395 

Hoover dam holds a large fraction of the total storage in the basin. Additionally, the Colorado River compact dictates the 

releases and therefore the storage in Lake Mead which has seen historic lows due to the megadrought in the southwestern 

United States (Williams et al., 2022). This said, the strong negative trend in the Lower Colorado is a cause for concern and has 

been a topic of much discussion as the Western US is currently experiencing a megadrought (Figure 6m) (Williams et al., 

2022). 400 

 

We also calculated the Sens slopes for the individual dams included in our regional analysis and mapped them in Figure 6p. 

Across CONUS, all basins have both positive and negative storage trends. Basins with predominately positive trends in Figure 

6o such as Ohio and Tennessee also have numerous dams with negative fraction filled trends. Additionally, basins such as the 

Lower and Upper Colorado have positive slopes. Therefore, the bulk of the storage trends seen in Figure 6o are dominated by 405 

the dams with the largest storage capacity. Figure 6p also depicts regions where the overall trend in Figure 6o is slightly skewed 

from what is observed regionally. In fact, regions with more flood control and navigational uses (the eastern and south-eastern 

US) have more positive fraction filled trends, while regions with more irrigation and water supply uses (the western US) have 
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more negative trends. The Texas Gulf region stands out in this regard as the region is dominated by both water supply and 

flood control uses and therefore there are both positive and negative storage trends. 410 

 

We also observe the degree of storage drawdown that happens over drought periods regionally (i.e., the grey shaded periods 

in Figure 6). In all basins, storage decreases during the dry periods. However, in humid regions and regions where flood control 

is the dominant reservoir purpose these declines appear to be much smaller. This is consistent with previous results showing 

that these locations maintain less storage overall and have smaller operational ranges. Semi-arid basins with higher levels of 415 

irrigation and water supply uses have sharper drawdown patterns during drought. Again, this is consistent with previous results 

showing larger operational range and carry over storage in these areas. In most cases, reservoir storage goes down during 

drought. There are, however, notable periods in all regions where storage increases. Examples include Souris Red Rainy and 

Texas Gulf during the drought periods in the early 1980s and the drought in the early to mid 1990s for Upper and Lower 

Colorado. More detailed regional analysis is required to understand the causes of these increases.  420 

 

 
Figure 6: Regional interannual fraction filled from October 1980 – October 2019 (a-l) and associated map of Sens slope values (m). 
The black lines are October storage, and the lavender is the linear trend. The maroon boxes correspond to periods where SPI values 
were less than -0.3. Sens slopes (m) range from -0.013 (dark purple) to 0.0011 (green) based with similar trends based on aridity. P 425 
values are calculated using a 95% confidence interval. The horizontal white and black lines denote the regional p values that are 
above the 5% probability (10 – 50% for the white lines and > 50% for the black lines) threshold and are not considered statistically 
significant. 
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In addition to overall storage trends, we evaluate whether there have been historical trends in operational range (i.e., the 430 

difference between maximum and minimum storage in a given month) for each year. For every region, we calculate a time 

series of monthly operational ranges and fit linear Sens slopes to each month to evaluate whether the operational range is 

increasing or decreasing for that month over time. Figure 7 depicts these trends as bar plots colored by positive (blue) or 

negative (pink) and shaded by statistically significant (dark) or non-significant (light) p values at a significance of 5%. Positive 

trends mean that the interannual operational range is increasing over time and negative trends mean that this interannual 435 

operational range is decreasing over time. Firstly, we will look at distinctions between positive and negative trends without 

accounting for the significance. Regions such as Souris Red Rainy, California, Lower Mississippi, Upper Mississippi, and 

Great Basin have more positive months than negative months indicating that overall, their interannual operational range is 

increasing over time. Conversely, basin such as Tennessee, Ohio, South Atlantic, Arkansas White Red, Texas Gulf, Upper 

Colorado, and Missouri have interannual operational ranges that are decreasing over the past 40 years. Lower Colorado has an 440 

even split between positive and negative trends suggesting a seasonality in the increase (April) and decrease (July, August, 

and October) of the operational range trends. Missouri and Lower Mississippi are unique examples of these two trends as the 

majority of their interannual operational range slopes are quite small except for one month: December for Lower Mississippi 

and May for Missouri. It’s possible that changes in operating range could be solely attributed to shifts in demand and inflow 

(which could still be captured with static rule curves) or it could be the case that the operating policies are also shifting over 445 

time.  

 

To account for the statistical significance, we group the behaviors into four categories.  First, the Tennessee, South Atlantic, 

Ohio, the Pacific Northwest, and Lower Colorado regions (Figure 7a, d, e, k, n) have three or more negative monthly trends 

that are statistically significant. All these regions aside from the Pacific Northwest have statistically significant negative trends 450 

in July and August with Tennessee, Ohio and South Atlantic having statistically significant trends in the summer months (June 

– August). The Pacific Northwest has decreasing trends in the fall and winter with increasing trends in July and August 

potentially to open storage for irrigation. Apart for the Lower Colorado and the Pacific Northwest, these regions are primarily 

humid with low carryover storage. The second set are regions that have predominately positive trends and greater than or equal 

to three statistically significant trends (Souris Red Rainy, and California a Upper (Figure 7f, j). Of these regions, Souris Red 455 

Rainy has statistically significant positive trends in the spring and fall, while California has statistically significant trends only 

in the fall. The positive and statistically significant values indicate that these regions have seen increases in interannual 

operational range during these seasons compared to their counterparts with negative trends. The last group are regions without 

statistically significant trends (Lower Mississippi, Upper Mississippi, Texas Gulf, Great Basin, Arkansas White Red, Upper 

Colorado, and Missouri (Figure 7b, c, g-i, l, m). While these basins may have one month of statistically significantly trends 460 

(December and May) the lack of statistically significant values does not allow us to definitely align them with operations.  
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Figure 7: Trends in the monthly fraction filled range from 1980-2019.  Bars are colored by not statistically significant (light) and 
statistically significant (dark). The p value is calculated with a 95% confidence interval and significant values are less than 0.1. Each 
panel pertains to a specific region within the United States where most of the storage capacity is covered (greater than 50%). Panels 465 
are organized from wettest to driest region.  

4. Discussion 

In this section we synthesize the detailed results presented above to; characterize regional differences in operating regimes 

(section 4.1) and evaluate where our results agree and disagree with common assumptions that are made in large scale reservoir 

modelling approaches (4.2). The intent here is to provide a summary of the behaviours we should expect to see from large 470 

scale models (which can be useful both for model evaluation and for model parameterization) and to highlight where current 

approaches may be the most systematically biased.  

 

4.1 Characterizing Regional patterns in reservoir operating regimes 

https://doi.org/10.5194/hess-2023-194
Preprint. Discussion started: 19 September 2023
c© Author(s) 2023. CC BY 4.0 License.



20 
 

Our results highlight strong regional differences in reservoir operations. More humid regions generally have lower total storage 475 

capacity and lower median fraction filled, while more arid regions have higher median fraction filled. This difference is 

consistent with findings by Ho et al. (2017); Graf (1999), and is due to regional differences in streamflow regimes and reservoir 

purpose.  Irrigation and water supply are often the main reservoir purposes in the Western more arid United States, while the 

eastern more humid United States contains more flood control and hydropower uses. Additionally, the more humid regions 

also have lower monthly storage ranges without strong seasonal cycles. This is due in part to the lower storage capacity dams 480 

without strong intra-annual storage changes (Patterson and Doyle, 2018; Benson, 2017). This is complimented by seasonal 

increases in fraction filled variance in the winter and spring for humid and flood control dominated regions to support flood 

control and navigation operations and ensure reservoir stable reservoir storage. Conversely, more arid regions with higher 

concentrations of irrigation main uses have spring and summer peaks to support runoff in snowmelt dominated basins (Upper 

Colorado, Pacific Northwest, and California) and irrigation uses.  485 

 

Flood control reservoirs are generally characterized by lower fraction filled values and less clear seasonal variability.  Median 

fraction filled values generally peak in May for flood control reservoirs (which could be due to reservoir operators maintaining 

low storage in the spring to prevent downstream flooding. Additionally, there are decreased monthly variations in flood control 

reservoirs as operators are attempting to keep their storage levels consistent with the maximum storage range peaking in the 490 

spring. Flood control and hydropower reservoirs have most stable seasonal median fraction filled with small peaks in the spring 

and winter as operators bring storage back to normal operating values. When observing the month of highest median fraction 

filled and the month of highest fraction filled range (Figure 4 a and b respectively) these two trends appear to be constant over 

time as we see that most reservoirs have a median fraction filled peak in April or May for Eastern reservoirs with operational 

range peaks in January.  495 

 

Conversely irrigation and water supply reservoirs have a much stronger seasonal cycle and different peak storage timing.  

While flood control reservoirs have median fraction filled peaks in May, irrigation reservoirs generally have fraction filled 

peaks in June (and in some cases, even late summer). Irrigation reservoirs are also dominated by strong filling cycles have 

strong seasonal trends in their monthly storage ranges.  Irrigation and water supply uses have monthly storage range peaks in 500 

the summer to support water supply for humans and plants during periods where precipitation and runoff is limited. This strong 

seasonality shows up in the operating range spread which is quite large in irrigation dominated basins with a wider spread 

during late spring and early summer (the main irrigation period in the United States). The median fraction filled peak month 

(Figure 4a) demonstrates that for most of the western US, this relationship holds. When looking at the month of highest 

operational range, we see that the range is highest in late summer and early fall for all western basins aside from California 505 

and the Pacific Northwest, where flood control operations have a higher priority. Regions have delayed peaks in their 

operations due in part to irrigation being separate from filling as operators strive to hold water later in the summer when supply 
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is not as consistent. Irrigation and water supply dominated regions also have a larger interannual variability when looking 

between water years (Figure 3).  

 510 

Across CONUS, we find a strong negative trend in reservoir storage which is consistent with previous studies (Adusumilli et 

al., 2019; Zhao and Gao, 2019; Hou et al., 2021; Randle et al., 2021). Only the Tennessee and Upper Mississippi basins have 

a statistically significant positive trend in storage over the past 40 years. This is due in part to the abundance of flood control 

and navigation reservoirs and increases in streamflow which potentially combine to increase the total storage held in this region 

(Naz et al., 2018). When looking at the individual dams in Figure 6p, we see that more flood control dominated regions 515 

(Tennessee, Ohio, South Atlantic, and California) have a large proportion of dams with a positive trend over the past 40 years. 

Declining storage trends are concerning in regions such as the Lower Colorado and Upper Colorado where the impact of a 

megadrought is threatening water supplies (Williams et al., 2022). Similarly, in the Lower Mississippi, low storage levels can 

threaten the operation of navigation reservoirs that support the transport of goods longitudinally in the United States.  

 520 

Throughout our study we find the Lower Colorado to be unique in many regards. The Lower Colorado has very low seasonal 

variations in median fraction filled values and operating range. With seasonal peaks during the summer (consistent with 

irrigation uses) and operational range peaks in April (consistent with flood control uses). Additionally, the spread of the 

operational range is quite similar to flood control reservoirs as it is kept quite steady with little to no monthly variations. 

Finally, the fraction filled variance peaks in the winter and early spring with no monthly changes. These dynamics are most 525 

likely the result of the fact that most of the water supply comes from reservoir releases from the Upper Colorado basin. The 

negative storage trend is concerning as this basin is water limited and extractions are routinely out pacing the inputs from the 

Upper Colorado. Combined with the current mega drought (Williams et al., 2022) facing the western United States, there is an 

large increase in vulnerability to drought in this region. 

 530 

4.2 Comparison to common reservoir assumptions 

Historically, global hydrologic models employ a range of simplifications to represent reservoir operations.   This is 

done out of necessity given the lack of consistent datasets on reservoir operations. Here we used the unique analysis that is 

made possible by the ResOpsUS dataset to discuss the potential limitations of simplifying assumptions. The intent is to 

highlight where more complicated approaches in reservoir operations may make a significant difference in estimated storage 535 

and water supply.   

 

Two widely cited approaches by Hanasaki et al. (2006) and Haddeland et al. (2006) rely on static reservoir characteristics such 

as maximum storage capacity, main reservoir purpose and average annual inflow to parameterize reservoir operations. These 

two models rely on similar simplifying assumptions: 1) assume that dead storage (the amount of water that cannot be pulled 540 

from the reservoir) is 10% of the maximum storage, 2) releases are based on start of operational year storage, 3) downstream 
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demand is weighted by maximum storage capacity in the basin, and 4) monthly water demand per sector is used to determine 

releases. Hanasaki et al. (2006) further assumes that modelled storage capacity is 85% of the observed maximum storage 

capacity and that reservoirs operations are determined by a single primary purpose. Haddeland et al. (2006) takes a slightly 

more complex approach allowing for multiple reservoir operations (i.e. water supply, hydropower, irrigation, or flood control) 545 

and employing retrospective rule curves where the year end releases are used to determine reservoir releases at the current 

time step. The assumptions employed by both of these approaches are a significant limitation for the complexity they can 

represent; however, they are also well suited for data sparse regions and global models. 

 

Our results do support the assumption that reservoirs can be split into two categories: irrigation and non-irrigation (Hanasaki 550 

et al., 2006). We see quite distinct storage patterns between irrigation dominated reservoirs in the western US and non-irrigation 

reservoirs in the eastern US. However, our results show significant seasonal variability in operations which cannot be explained 

by seasonal differences inflow alone.  Approaches that use constant operating policies throughout the year are likely to miss 

seasonal patterns in both fraction filled and operating ranges.  

 555 

There are recent efforts that take a more complex approach and use historical reservoir time series to derive reservoir operations 

(Turner et al., 2020; Yassin et al., 2019; Turner et al., 2021). In these methods, operations are derived from observed reservoir 

time series and the number of generalized assumptions are limited. Yassin et al. (2019) employs a set of five storage zones in 

which reservoir releases will shift based on the storage zone and incoming streamflow. Like Turner et al. (2021), these zones 

are set based on historical time series, yet unlike Turner et al. (2021), these zones are set via an exceedance probability or 560 

optimization function instead of harmonic regressions. Therefore, Yassin et al. (2019) assumes that the operational zones will 

stay static into the future. Comparatively, Turner et al. (2021) and Turner et al. (2020) (which are both based on the same 

model) assume that releases are based upon the week of the year, the incoming inflow that week, and the start of week storage. 

The harmonic regression is fit to historical time series to determine the operational range. This method is also readily 

extrapolated to other reservoirs with similar operational purposes and hydrologic seasonality.  565 

 

Still, previous research has found that that rule curves can underestimate seasonal dynamics by smoothing out peaks (Turner 

et al., 2021). Our results demonstrate large seasonal fluctuations in the eastern reservoirs which could be underestimated when 

only looking at smoothed curves such as in Turner et al. (2020). We also show that operational ranges vary throughout the 

year indicating the need for dynamic zoning of reservoirs as seen in Yassin et al. (2019). This may also be necessary for 570 

multipurpose reservoirs or those with large interannual storage (primarily those in western US and California). The 

seasonalities in operational ranges (Figure 2) depict that eastern regions with more flood control reservoirs (and those that rely 

heavily on forecasted inflows and multipurpose reservoirs in irrigated dominated basins) would be prime candidates for the 

models similar to Yassin et al. (2019) as it allows for storage targets for a variety of uses. Unfortunately, this method will 

continue to be limited by data gaps until reservoir timeseries are consolidated in one centralized database.  575 
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Another common assumption in large scale models is that operating policies that are not changing over time. For example, all 

the above reservoir operations: Hanasaki et al. (2006),  Haddeland et al. (2006), Yassin et al. (2019), and Turner et al. (2021), 

are trained on historical data and assume that operational range bounds stay consistent. Our results show that not only are there 

long-term trends in total reservoir storage, but there are also trends in the reservoir operating ranges over time.  In more arid 580 

basins such as the Upper Colorado, Souris Red Rainy, and California the operational range has been increasing. While in more 

humid basins, such as the Tennessee, Ohio, and South Atlantic regions operational ranges have been decreasing which is 

supported by Patterson and Doyle (2018) that show operational ranges have shifted.   

 

Many reservoir studies assume that reservoir storage stays between 10% and 85% of that maximum storage capacity (Yassin 585 

et al., 2019; Voisin et al., 2013).  This assumption is supported in all 14 of the regions that we looked at in CONUS.  In fact, 

all regions have a minimum fraction filled of at least 20% and in most cases 40%. This suggests that in practice reservoir 

storage stays well above the 10% threshold. Providing 10% as the lowest storage value, may not be a problem if reservoirs are 

not hitting that threshold but could also lead to simulations that overestimate the actual operational range. Specifically, our 

analysis demonstrates that most eastern basins (with primary uses of flood control, hydropower and navigation) have long term 590 

median storage ranges that stay well within this assumed operating range. However, in Western regions, we see fraction filled 

values quite close to 0.85 (Figure 1 a-l).  

 

There are 100 dams in our study where observed storage values exceed the reported maximum storage values in in GRanD 

one or more times.  While some of these could directly relate to periods when the reservoir was overtopped, it could also be 595 

that the maximum storage capacity in GRanD is inaccurate due to data gaps. In the GRanD documentation Lehner et al. (2011) 

specifically state that if the maximum storage capacity was not reported, the reported storage capacity or minimum storage 

capacity are used instead.  

5. Conclusion 

Here we use the first national dataset of direct reservoir observations, ResOpsUS to develop a comprehensive summary of 600 

historical reservoir operations across the US and compare the relationships we get from direct observations to common 

assumptions made in large scale reservoir parameterizations.  Our results show strong regional differences in reservoir 

behaviours as well as trends over time.  Median storage peaks in winter and spring for the eastern US and summer for the 

Western US. Conversely minimum storage typically occurs in the early summer in the eastern US and winter in the western 

US.  Over our 40-year study period (1980-2019), five of regions we evaluated had statistically significant decreasing storage 605 

trends.  Of these five, the Lower Colorado is the most negative due the ongoing mega drought in the past 20 years (Williams 

et al., 2022). The Tennessee region is the only basin with a positive storage trend, potentially due to increased streamflow 
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across the eastern US and decreasing operational ranges (Naz et al., 2018).  Overall operational ranges have been increasing 

over time in more arid regions and decreasing in more humid regions.  

 610 

The characterization of seasonal operating patterns presented here is provides direct points of evaluation for modelled rule 

curves. Our operational range analysis can be useful to both deriving rule curves as well as a calibration tool to assess that 

modelled operations align with historical shifts. Similarly, the seasonal shifts in operational ranges shown here are important 

to understanding when in the year reservoirs are most actively filling and draining.  Spatial variability in our seasonal results 

highlights the needs for complex zoning or rule curves. 615 

 

While many of our findings agree with the general assumptions that are commonly made about different types of reservoirs 

(e.g. storage and release timing differences for flood control vs irrigation reservoirs), the spatial and temporal complexity of 

our results highlights the potential biases that can be introduced with simplified operational representations.  For example, our 

evaluation of seasonal trends, something that has not been explored previously with direct observations at this scale, highlights 620 

seasonal differences operating behaviors throughout the year which may not be capture by models that assume constant 

operations. Similarly, long term trends in reservoir storage and operating ranges point to operating policies that also shift over 

time.  The results presented here can a benchmark for large scale reservoir models to (1) understand the limitations of common 

assumptions and (2) quantify the potential biases in data limited regions where this type of comparison is not possible.   

6. Code Availability 625 

All codes for this analysis are hosted on GitHub at this link: https://github.com/jsteyaert/ResOpsUS_Analysis  

7. Data Availability 

All the raw data in this analysis was obtained via Zenodo using the DOI in Steyaert et al. (2022). All regional fraction filled 

values can be found in the data/HUC_FF folder at the GitHub link in Section 6. Code Availability.  
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